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Summary

We compare approaches for analysis of gene-
environment (G # E) interaction, using segregation and
joint segregation and linkage analyses of a quantitative
trait. Analyses of triglyceride levels in a single large
pedigree demonstrate the two methods and show
evidence for a significant interaction ( whenP � .015
segregation analysis is used; when jointP � .006
analysis is used) between a codominant major gene and
body-mass index. Genotype-specific correlation
coefficients, between triglyceride levels and body-mass
index, estimated from the joint model are ,r � .72AA

, and . Several simulation studiesr � .49 r � .20Aa aa

indicate that joint segregation and linkage analysis leads
to less-biased and more-efficient estimates of a G #

E–interaction effect, compared with segregation analysis
alone. Depending on the heterozygosity of the marker
locus and its proximity to the trait locus, we found joint
analysis to be as much as 70% more efficient than
segregation analysis, for estimation of a G #

E–interaction effect. Over a variety of parameter
combinations, joint analysis also led to moderate
(5%–10%) increases in power to detect the interaction.
On the basis of these results, we suggest the use of
combined segregation and linkage analysis for improved
estimation of G # E–interaction effects when the
underlying trait gene is unmeasured.

1. Introduction

Many human traits (e.g., blood pressure, lung cancer,
and breast cancer) appear to depend on both genetic and
environmental factors, possibly interacting. Detection of
gene-environment (G # E) interactions is important for
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several reasons. First, identifying an interaction will in-
crease our understanding of the mechanisms through
which the gene and the environmental agent act to con-
trol expression of the trait. From a public-health per-
spective, identifying an interaction will make it possible
to target prevention measures at persons who are at
particularly high risk. An example is the well-known
interaction between phenylalanine exposure and the
gene responsible for causing the recessive disorder phen-
ylketonuria, in which dietary restrictions are necessary
only for individuals homozygous for the disease gene.
From a statistical standpoint, ignoring an existing G #

E interaction in an analysis can, erroneously, make the
main effects of the gene and the environmental factor
appear nonsignificant (Ottman et al. 1990), and thus
important risk factors for the trait may be overlooked.
Finally, failing to model a G # E interaction in a seg-
regation analysis can lead to incorrect conclusions with
respect to determination of the mode of inheritance
(Tiret et al. 1993) and estimation of the magnitude of
genetic effects and allele frequencies (Eaves 1984).

In the context of pedigree studies, there are two pri-
mary methods for examination of G # E interactions.
The first is to stratify the sample of pedigrees into two
or more groups, on the basis of one of the factors (e.g.,
environmentally exposed vs. unexposed) and then,
within each stratum, to analyze the relationship between
the other factor (e.g., the gene) and the trait. This method
relies on the ability to classify an entire pedigree as ex-
posed or unexposed, which will not be feasible for many
types of exposures (e.g., sex, if gene-sex [G # S] inter-
action is of interest). Furthermore, reducing the sample
size through subsetting the data will result in lower sta-
tistical power for identification of interactions than will
a single analysis using the entire data set.

The second method for analysis of G # E interactions
is to directly model them in a segregation-analysis frame-
work, an approach that has been used by several inves-
tigators (Moll et al. 1984; Gueguen et al. 1989; Rebbeck
et al. 1989; Konigsberg et al. 1991; Gauderman et al.
1997). For example, using the 337 lung cancer pedigrees
analyzed by Sellers et al. (1990, 1992), Gauderman et
al. (1997) specified a proportional-hazards model for the
joint effect of smoking and a major gene and for their
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interaction on lung cancer risk. Direct modeling of in-
teractions is commonly done in the analysis of measured
environmental factors from epidemiological studies, and
several software packages are available for this type of
analysis (e.g., SAS and BMDP). These packages can also
be used to analyze interactions between environmental
factors and measured genes. However, if the gene is un-
measured, some form of segregation analysis is typically
used, incorporating the interaction in the penetrance
function for the trait. Direct modeling of interactions
has the advantage that the entire data set can be used
in a single analysis.

It is well known that detecting an interaction between
two measured covariates is less powerful than detecting
each component main effect (Breslow and Day 1987).
Power for detecting a G # E interaction when the trait
gene is unmeasured will depend in part on the underlying
trait-gene distribution for each person. In a segregation-
analysis setting, this distribution depends on the pattern
of trait phenotypes in the family and can be quite vague
in the case of a multifactorial trait. The addition of a
linked marker in a joint segregation and linkage analysis
may provide additional information about the person-
specific trait-gene distributions and thus may lead to an
increase in power for detection of G # E interactions.

A general regressive model for joint segregation and
linkage analysis was proposed by Bonney et al. (1988),
and analysis using this model has been used to investi-
gate a variety of traits (Tiret et al. 1992; Martinez et al.
1995; Craig et al. 1996). Software has been developed
for fitting Bonney et al.’s model to allow it to incorporate
gene-covariate interactions (Demenais and Lathrop
1994). Markov-chain Monte Carlo methods for joint
segregation and linkage analysis have also been devel-
oped (Guo and Thompson 1992; Thomas and Cortessis
1992).

In this paper, we will use simulation studies to com-
pare the efficiency for estimation and the power for de-
tection of G # E interactions in segregation analysis
alone versus the efficiency and power obtained with use
of joint segregation and linkage analysis. We will inves-
tigate relative efficiency (RE) and power over a variety
of inheritance modes, parameter values, and data struc-
tures. We will also compare the efficiency and power
from these approaches versus what would have been
obtained if the trait gene could be measured, as a ba-
rometer of the loss in power that we can expect com-
pared with the optimal case.

In section 2, we describe the models and assumptions
underlying the analyses. Section 3 summarizes a real-
data analysis of a G # E interaction for triglyceride (Tg)
levels in a single large pedigree. The results demonstrate
the difference, in estimates and hypothesis tests, that can
arise from the use of the different analytic techniques,
which will motivate the simulation studies. Simulation

methods and results are described in section 4, and con-
cluding remarks are given in section 5.

2. Models

Let index the set of subjects and leti � 1, ..., I f �
index the set of families in a given data set. The1, ..., F

information collected for each subject includes a trait
phenotype Yi, one or more measured covariates Zi, and
a marker phenotype Mi. Any of these data may be miss-
ing for some subjects. We assume that Mi is determined
by a fully penetrant gene (mi) with an arbitrary number
of alleles and corresponding allele frequencies qm. We
further assume that Yi depends on a single diallelic par-
tially penetrant major gene gi with alleles A and a and
population frequency qA. We define Gi to be a “genetic
covariate” based on genotype gi and an assumed mode
of inheritance. For example, under dominant inheri-
tance, if or Aa, and otherwise.G � 1 g � AA G � 0i i i

Let Xi denote the vector of covariates for subject i, in-
cluding Zi, Gi, and, possibly, their interaction(s).

We concentrate on a continuous trait and consider a
penetrance function based on the linear model: Y �i

, where a is the intercept and b is a vector′a � b X � ei i

of regression coefficients corresponding to the covariates
in the model. If we assume that the random errors ei,

are independent and normally distributedi � 1, ..., I,
with mean 0 and variance , then the penetrance func-2je

tion for the ith subject is the normal density

1 ′ 2 2f(YFQ) � exp[�(Y � a � b X ) /(2j )] ,i i i e�j 2pe

where is the set of penetrance-model pa-2Q � {a, b, j }e

rameters. An assumption in this model is that the major
gene accounts for all of the intrafamily correlation in
the trait phenotype. This restriction can be relaxed to
account for additional intrafamily dependence—for ex-
ample, by use of the regressive model (Bonney 1984;
Bonney et al. 1988) or the mixed model (Morton and
Maclean 1974).

If the major gene can be observed, the likelihood is
simply the product of the individual-specific penetrance
functions; that is,

L(Q) � � f(YFQ) .ii

When the major gene is unobserved, the likelihood is
formed by summing over all possible combinations of
joint genotypes in each family. In a segregation-analysis
setting, the likelihood for family f is given by

L (Q, q ) � �[P(gFq ) � f(YFQ)] , (1)�f A f A ii f
gf
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where the first factor is a function of the trait-allele fre-
quency for founders and of Mendelian-transmission
probabilities for nonfounders. The total likelihood for
all pedigrees is the product of these family-specific con-
tributions; that is, . In a joint seg-L(Q, q ) � � L (Q, q )A f f A

regation and linkage analysis, the family-specific likeli-
hood is written as

L (Q, q , q , v)f A m

� �[P(g , mFq , q , v) � f(YFQ)P(M Fm )] ,�f f A m i i ii f
g ,mf f

(2)

where the first factor now also depends on the marker-
allele frequencies (qm) for founders and on the recom-
bination fraction (v) for nonfounders. The factor
P(Midmi) is the marker-penetrance function, which is as-
sumed to be 1 for all mi consistent with Mi and to be 0
otherwise (Bonney et al. 1988).

Computation of the likelihoods in equations (1) and
(2) is accomplished by use of the peeling algorithm (Els-
ton and Stewart 1971; Lange and Elston 1975). To test
for G # E interaction, these likelihoods can be maxi-
mized both with and without a G # E–interaction term
in the penetrance model, and the likelihood-ratio test
can be used to test the null hypothesis that the corre-
sponding regression coefficient is 0. Alternatively, a Wald
test can be computed as the estimated interaction co-
efficient divided by its standard error. All analyses re-
ported in this paper were performed by use of the Ge-
netic Analysis Package (1997).

3. A Motivating Example

We present an analysis of G # E interaction, using
the HGAR1 pedigree distributed to the 8th Genetic
Analysis Workshop (Bailey-Wilson and Elston 1993). A
diagram of this pedigree has been given by Olshen and
Wijsman (1996). The pedigree consists of 232 subjects
and includes measurements of blood lipid levels, includ-
ing high-density lipids, low-density lipids, Tg (in mg/dl),
and total serum cholesterol. Also collected were age,
height (in inches), and weight (in pounds). Phenotype
and covariate data are available for 190 (82%) of the
subjects. Previous analyses of these data (Bailey-Wilson
et al. 1993) showed evidence for linkage of Tg to the
marker KM on chromosome 2p. Sznajd et al. (1989)
analyzed a different data set and showed that Tg level
was positively correlated with body-mass index (BMI),
although the magnitude of the correlation was fairly
weak. We will present segregation and joint segregation
and linkage analyses aimed at testing whether there is
an interaction between a major gene and BMI, in their
effect on Tg.

The distribution of Tg in these data is statistically non-
normal when the Kolmogorov test is used, and so, as
others have done, we consider instead the square root
of Tg ( ). A standard segregation analysis of�Y � Tg

was performed by fitting the general “ousiotype”�Tg
model (Cannings et al. 1978) and comparing several
nested alternatives, by use of likelihood-ratio tests. The
main effects of age and BMI were included in the pen-
etrance model. The alternative transmission models
tested were the Mendelian codominant, dominant, and
recessive models; the sporadic model; and the pure en-
vironmental model (i.e., a single discrete type with fre-
quency qA, identically distributed among all subjects).
The Mendelian dominant ( ), Mendelian reces-P � .002
sive ( ), sporadic ( ), and environ-P � .0006 P ! .0001
mental ( ) models all fit the data significantlyP � .006
worse than did the general model. However, the Men-
delian codominant model could not be rejected (P �

) and was the most parsimonious by Akaike’s infor-.12
mation criterion.

On the basis of these findings, we used a linear re-
gression of the following form, to model gene-BMI in-
teraction (G # BMI):

Y � a � b (Age ) � b (BMI ) � b (G ) (3)i Age i BMI i AA AAi

�b (G ) � b (G # BMI )Aa Aa AA#BMI AA ii i

�b (G # BMI ) � e ,Aa#BMI Aa i ii

where is 1 if gi is AA and is 0 otherwise, and sim-GAAi

ilarly for . BMI was computed as 100(weight/GAai

height2), and both age and BMI were standardized by
subtracting their sample means (28.5 and 3.1,
respectively).

On the basis of the model in equation (3), the geno-
type-specific variance of Y for a person of a specific age
is given by

2 2 2( )j � b � b j if g � AAe BMI AA#BMI BMI
2 2 2 2( )j � j � b � b j if g � Aa,YFg e BMI Aa#BMI BMI{

2 2 2j � b j if g � aae BMI BMI

where is the variance of BMI. Genotype-specific2jBMI

correlation coefficients between Y and BMI are given by

2 2j � jYFg e
r � .�g 2jYFg

The maximum-likelihood estimator rg of rg is obtained
by substituting the corresponding maximum-likelihood
estimates of the variances and regression coefficients into
the equations above.

Table 1 shows parameter estimates and standard er-
rors from a segregation analysis using the codominant
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Table 1

Main Effects and Interaction Models for Tg, With and Without Linkage to Marker KM, in HGAR1 Pedigree

MAXIMUM-LIKELIHOOD ESTIMATE (STANDARD ERROR)

Segregationa Joint Segregation and Linkageb

Model 1 (Main Effects) Model 2 (Interaction) Model 3 (Main Effects) Model 4 (Interaction)

a 7.677 (.237) 7.616 (.228) 7.638 (.260) 7.507 (.237)
bAge .026 (.009) .026 (.009) .025 (.009) .023 (.010)
bBMI .903 (.218) .491 (.366) .900 (.218) .364 (.368)
bAA 5.067 (.589) 4.690 (.447) 5.097 (.574) 4.719 (.465)
bAa 1.507 (.320) 1.419 (.305) 1.534 (.311) 1.484 (.305)
bAA # BMI ) 1.232 (.461) ) 1.411 (.448)
bAa # BMI ) .411 (.516) ) .584 (.466)

2je 1.707 (.264) 1.585 (.250) 1.675 (.266) 1.504 (.241)
qA .315 (.077) .349 (.071) .318 (.075) .362 (.067)
qB ) ) .383 (.060) .383 (.060)
vKM ) ) .183 (.282) .100 (.113)
Log likelihood �378.28 �374.06 �458.16 �452.97

a ; (obtained from likelihood-ratio test of null hypothesis that both interaction coefficients are zero).2x � 8.44 P � .015
b ; (obtained from likelihood-ratio test of null hypothesis that both interaction coefficients are2x � 10.38 P � .006

zero).

Figure 1 Genotype-specific regressions of square-root Tg (in mg/
dl) on BMI (in lbs/100 in2), for joint segregation and linkage analysis,
on the basis of estimates shown in table 1, model 4.

model, both without (model 1) and with (model 2) a G
# BMI interaction. The likelihood-ratio test, obtained
by comparison of the log likelihoods from models 1 and
2, gives ( ), indicating a significant2x � 8.44 P � .015(2)

G # BMI interaction. Genotype-specific correlation co-
efficients, based on model 2 estimates, are ,r � .70AA

, and .r � .46 r � .27Aa aa

We reanalyzed the data, using joint segregation and
linkage analysis, to include estimation of v between the
trait locus and the marker KM. This marker is diallelic,
with allele B dominant to allele b. The allele frequency
qB was also estimated in these analyses. Table 1 shows
parameter estimates from this joint analysis, without
(model 3) and with (model 4) the G # BMI interaction
term. The estimated v between g and KM is inv̂ � .18

the model without an interaction (model 3) and is v̂ �
when the interaction is included (model 4). The es-.10

timated interaction coefficients are larger in the joint
analysis ( , and ; model 4)ˆ ˆb � 1.41 b � .58AA#BMI Aa#BMI

than in the segregation analysis alone ( ,b̂ � 1.23AA#BMI

and ; model 2). The likelihood-ratio testb̂ � .41Aa#BMI

of the interaction coefficient from joint models 3 and 4
gives ( ), which is larger than the2x � 10.38 P � .006(2)

x2 statistic based on segregation models 1 and 2.
Figure 1 graphically depicts the G # BMI interaction

on the basis of the estimated coefficients from model 4.
Also included in figure 1 are the corresponding estimated
genotype-specific correlation coefficients between �Tg
and BMI that are based on this model. The overall Pear-
son correlation coefficient between and BMI in these�Tg
data is . The strongest genotype-specific corre-r � .39
lation is predicted for homozygous carriers ( ),r � .72AA

estimated to represent approximately of the2q � 13%A

population. The model predicts moderate correlation for
heterozygotes ( ; 46% of the population) andr � .49Aa

weak correlation for homozygous noncarriers (r �aa

; 41% of the population)..21
Both the difference, in G # E–interaction estimates,

between the two types of analyses and the larger x2 sta-
tistic obtained in the joint analysis motivated us to in-
vestigate more generally the effect that inclusion of a
linked marker had on the precision and efficiency of G
# E–interaction estimates and on the power to detect
an interaction.

4. Simulation Studies

We performed three sets of simulations to determine
whether adding a linked marker to a segregation analysis
leads to improved efficiency for estimating—and power
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Table 2

Parameter Values for Three Data-Generation Models

Strength of Interaction
2 2j /jGZ Y

2jY bZ bG bGZ rAA,Aa raa

Strong .25 2.5 .50 1.83 .541 .72 .45
Weak .15 2.0 .45 1.63 .327 .61 .41
None .00 1.5 .39 1.43 .000 .37 .37

for detecting—a G # E interaction. In the first simu-
lation, we investigated the effect of adding a linked
marker while varying both the true strength of the in-
teraction and the v between the trait and marker loci.
In the second study, we assessed how the level of het-
erozygosity (H) at the marker locus affects the relative
performance of joint segregation and linkage analysis,
compared with segregation analysis alone. In the third
simulation study we examined the sensitivity of our find-
ings to the inheritance mode and allele frequency at the
trait locus and to the types of pedigree structures being
analyzed.

4.1. Data Generation and Analysis

In each simulation study, 200 independent replicate
data sets were generated. Each data set consisted of a
single 232-member pedigree with the same structure as
the HGAR1 pedigree described above. Genotypes at a
trait locus (g) and at a fully codominant marker locus
(m) were simulated for each subject, under the assump-
tion of Hardy-Weinberg and linkage equilibrium. Trait
and marker genotypes were randomly sampled for foun-
ders, conditional on the assumed allele frequencies, and
then were “dropped” through the pedigree, according
to Mendelian-transmission rules and the assumed v.

An environmental covariate (Z) was generated ran-
domly and independently for each subject, from the stan-
dard normal distribution. Conditional on the assigned
trait genotype and covariate, a continuous phenotype
was randomly sampled for each subject i from the nor-
mal distribution, with mean m � b Z � b G �Y Z i G i

, where G codes for dominant inheritanceb (G ∗ Z )GZ i i

and where the error variance is set to 1.0. Trait and2je

covariate data for subjects with missing data in the orig-
inal HGAR1 pedigree ( ) were considered as miss-n � 42
ing in the simulated data sets. Marker phenotypes, how-
ever, were simulated for all subjects, since analysis of
replicate data sets with missing marker data would have
been computationally infeasible.

According to the logic of Tiret et al. (1993), the total
variance of Y can be written as

2 2 2j � b Var(Z) � b Var(G)Y Z G

2�b [b Var(GZ) � 2b Cov(Z, GZ)] � jGZ GZ Z e

2 2 2 2� j � j � j � j ,Z G GZ e

where the terms in the latter summation are the variances
due to the environmental covariate, the major gene, the
interaction, and the random error, respectively. Dividing
each of the component variances by yields the percent2jY

of variance explained by each term in the model. In all
simulations, was set to 10%, and was set to2 2 2 2j /j j /jZ Y G Y

25%.

Three types of analysis were performed on each data
set: (1) segregation analysis ignoring the marker locus,
(2) joint segregation and linkage analysis estimating all
model parameters except the marker allele frequencies,
and (3) linear regression treating the simulated trait
genotypes as if they were observed. For each analysis,
maximum-likelihood estimates and the corresponding
values of the log likelihood were obtained both with (L1)
and without (L0) the G # E term in the penetrance
model. A likelihood-ratio test was then computed as

, which is approximately x2 distrib-2x � � 2(L � L )0 1

uted with 1 df under the null hypothesis of no inter-
action. The empirical power for detecting the G # E
interaction in each type of analysis was computed as the
percent of data sets in which —that is, signif-2x 1 3.84
icance at the .05 level, for a two-sided test. We also
report the efficiency of each type of analysis, relative to
segregation analysis, computed as the ratio of the esti-
mated mean squared errors for the interaction param-
eter, bGZ. An RE 11.0 for either joint segregation and
linkage or measured gene analysis indicates greater ef-
ficiency for estimation of bGZ, compared with segrega-
tion analysis. Finally, we report the mean of GZ acrossb̂

replicates and the bias in these estimates as a percent of
the true value.

4.2. Simulation 1: The Effect of the Interaction
Strength and v

In this simulation, we assume, at the trait locus, dom-
inant inheritance and, to maximize heterozygosity, true
allele frequency . We vary the interaction var-q � .50A

iance to reflect three situations: strong ( ),2 2j /j � 25%GZ Y

weak ( ), and no ( ) G # E2 2 2 2j /j � 15% j /j � 0%GZ Y GZ Y

interaction. Table 2 shows the parameter values for the
three generating models and also shows the correspond-
ing genotype-specific correlation coefficients between Y
and Z. We consider a diallelic marker locus with true
allele frequency (marker ) and vary vq � .50 H � .50B

to reflect loose ( ) and tight ( ) linkagev � .20 v � .001
with the trait locus.

Simulation results for each model condition and
method of analysis are summarized in table 3. For a
strong interaction effect, estimates from segregation
analysis were biased upward (by 5.7% on average),
whereas estimates from joint analysis were less biased,
for both loosely linked (4.3% on average) and tightly
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Table 3

Estimation and Detection of G # E Interaction, from Segregation, Joint Segregation and Linkage, and Observed-Gene Analysis, with
Use of Diallelic Marker with , from 200 Replicates of Simulated DataH � .50

INTERACTION STRENGTH

(TRUE bGZ) AND PARAMETER SEGREGATION

JOINT SEGREGATION AND LINKAGE FOR v �
OBSERVED-GENE

ANALYSIS.2 .001

Strong (.541):
(Bias)ab̂GZ .572 (5.7%) .564 (4.3%) .552 (2.1%) .538 (�.6%)

REb 1.0 1.14 1.26 2.69
Powerc 69.5% 71.0% 74.5% 86.0%

Weak (.327):
(Bias)ab̂GZ .360 (10.1%) .351 (7.3%) .347 (6.1%) .323 (�1.2%)

REb 1.0 1.04 1.34 2.50
Powerc 30.0% 33.0% 32.5% 46.0%

None (.000):
(Bias)ab̂GZ .002 (ND) �.010 (ND) .019 (ND) �.007 (ND)

REb 1.0 1.63 2.18 5.23
Powerc 6.0% 5.5% 3.5% 4.5%

a Average estimate (bias as a percent of the true value) across 200 data replicates. ND � not defined.
b Mean squared error from segregation analysis, divided by mean squared error from other analysis.
c Percent of data replications in which is rejected at the 5% significance level when the likelihood-ratio test is used.H :b � 00 GZ

Table 4

Percent Bias, RE, and Power for a Strong Interaction Effect, Based on N and H at Marker Locus, from 200 Replicates of Simulated
Data

SEGREGATION

JOINT SEGREGATION AND LINKAGE ( )v � .001
OBSERVED-

GENE

ANALYSIS

N � 2
,N � 3

H � .67
,N � 5

H � .80
,N � 10

H � .90
,N � 20

H � .95H � .10 H � .20 H � .35 H � .50

Biasa 5.7% 3.8% 2.6% 2.4% 2.1% 2.1% .8% .7% .9% �.6%
REb 1.00 1.10 1.19 1.28 1.26 1.37 1.49 1.68 1.72 2.69
Powerc 69.5% 71.5% 74.0% 74.0% 74.5% 73.5% 74.5% 79.0% 78.0% 86.0%

a Mean bias as a percent of the true value (.541), across 200 replicate data sets.
b Mean squared error from segregation analysis, divided by mean squared error from other analysis.
c Percent of data replications in which is rejected at the 5% significance level when the likelihood-ratio test is used.H :b � 00 GZ

linked (2.1% on average) markers. Estimates of effi-
ciency relative to segregation analysis were higher for
joint analysis with both a loosely linked marker (RE
1.14) and a tightly linked marker (RE 1.26). Power was
also increased, from 69.5% in segregation analysis to
71.0% in joint analysis with a loosely linked marker and
to 74.5% in joint analysis with a tightly linked marker.
However, the efficiency and power in a joint analysis are
still substantially less than those in the optimal case of
observation of the trait gene (RE 2.69, power 86%).

When the interaction effect was weak, the upward bias
in the segregation estimate was 10.1% on average, com-
pared with 7.3% and 6.1% in joint analysis with a
loosely linked and a tightly linked marker, respectively.
Joint analysis with a tightly linked marker led to 34%
greater efficiency, compared with segregation analysis.
Under the null case of no interaction ( ), all meth-b � 0GZ

ods produced nearly unbiased estimates, on average, and
empirical powers within sampling variability of the nom-
inal 5% significance level. However, efficiency was still

improved with the inclusion of either a loosely linked
(RE 1.63) or a tightly linked (RE 2.18) marker.

4.3. Simulation 2: The Effect of H at the Marker Locus

In this step of the study, we focused on the strong-
interaction, tight-linkage model described in simulation
1. We performed several simulations, considering dif-
ferent H levels (.10–.95). was achieved by sim-H ! .50
ulating a diallelic marker with . More-inform-q ! .50B

ative markers were obtained by increasing the number
of alleles at the marker locus (to 3, 5, 10, or 20) and
assuming that all alleles were equally frequent in the
population.

Table 4 shows percent bias, RE, and power, for var-
ious numbers of alleles (N) and H values at the marker
locus. Estimates of bias from all joint analyses were less
than those from segregation analysis and tended to de-
crease with increasing H. The estimated RE was 1.10
when and generally increased with increasingH � .10
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Figure 2 Estimated mean squared error, by H at marker locus,
for a strong interaction effect, from segregation analysis ( ) andH � 0
joint segregation and linkage analysis (Joint S & L), with a tightly
linked marker ( ). The broken line gives the estimated meanv � .001
squared error for the optimal case of analysis of a measured-trait gene.

H, to a high of 1.72 when . The power forH � .95
detecting the interaction in joint analysis ranged from
71.5%, when , to 79%, when , com-H � .10 H � .90
pared with 69.5% in segregation analysis alone. Figure
2 graphically shows a comparison of mean squared er-
rors from the joint analyses and segregation analysis
( ). The simulated conditions (denoted by asterisks)H � 0
are connected to show the inferred mean squared errors
over the range of H values. The addition of any linked
marker reduces the mean squared error, compared with
that for segregation analysis alone. However, even for a
very informative marker ( ), the mean squaredH � .95
error is substantially higher than that for the optimal
case of regression analysis of a measured trait gene.

4.4. Simulation 3: The Effect of Varying Trait Models
and Data Structures

The simulation design described above considers a
trait segregating in a single large pedigree, according to
a dominant-inheritance model with allele frequency

. We investigated the sensitivity of the findingsq � .50A

to these assumptions, by performing several additional
simulations. For the dominant model, we considered two
additional allele frequencies, and . Weq � .30 q � .10A A

also simulated recessive inheritance, with andq � .70A

, and additive inheritance, with andq � .50 q � .50A A

. Each of these models was simulated in theq � .30A

single large pedigree described above. Additionally, each
model was simulated in the pedigrees of the Berkeley
Lipid Data Set, which was also distributed to partici-
pants of the 8th Genetic Analysis Workshop (Krauss et
al. 1993). This data set includes 420 subjects in 27 ped-
igrees with 5–120 members (mean 14.2 members). We
eliminated 36 childless spouses of family members, leav-
ing 384 subjects. In the real data, 141 subjects are miss-
ing either lipid measurements or BMI; these subjects are
considered to have missing data in the simulations as
well.

In all of the sensitivity simulations, we generated data
according to the regression coefficients of the strong-
interaction model (table 2). Thus, within an inheritance
model, the genotype-specific regressions of Y on Z are
the same, but the proportion of subjects in each genotype
group differ, depending on the assumed allele frequency.
Across inheritance models, the definition of G differs;
that is, for and is 0 otherwise in theG � 1 g � AA
recessive model, and for , forG � 1 g � AA G � .5

, and is 0 otherwise in the additive model.g � Aa
Table 5 shows the percent bias in estimates of the

interaction effect in all the models and data structures
considered. In almost all cases, estimates from joint anal-
ysis were less biased than those from segregation anal-
ysis. As an example, segregation-analysis estimates for
the additive model were upwardly biased by ∼10% in

the case of a single large pedigree and by ∼25% in the
case of mixed-size pedigrees. The addition of a linked
marker in a joint analysis virtually eliminated this bias
for the large pedigree and reduced it 4% for mixed-size
pedigrees. Table 6 shows estimates of power to detect
the interaction, in all the simulations. Adding a linked
marker did not improve power in the dominant model
with but did improve power in all other mod-q � .30A

els. Power gains were modest, 1.5%–7%. In some of the
models’ conditions, power was already high when seg-
regation analysis was used, leaving little room for im-
provement. For a given mode of inheritance and allele
frequency, power with the mixed-size pedigrees was al-
ways higher than with the single large pedigree, because
of the larger sample size in this data set.

Figure 3a and figure 3b show the relative efficiencies
of joint and observed-gene analysis, respectively, com-
pared with segregation analysis. In all models and data
structures, adding a linked marker improved efficiency
(fig. 3a), from a 5% increase (for the additive model,

, mixed-size pedigree) to a 40% increase (for theq � .5A

dominant model, , single large pedigree). Forq � .30A

both the single large pedigree and the mixed-size pedi-
grees, the largest improvement was observed under the
dominant model, and the smallest was observed under
the additive model. In general, efficiency gains for joint
analysis were greater with a single large pedigree than
with several mixed-size pedigrees. This is consistent with
an overall finding of the 10th Genetic Analysis Work-
shop—that large pedigrees provide more linkage infor-
mation per subject than do several smaller pedigrees, all
other conditions being equal (Wijsman and Amos, in
press).

Relative efficiencies when the gene was observed (fig.
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Table 5

Percent Bias in Estimates of Strong G # E Interaction, from Segregation, Joint Segregation and Linkage, and Observed-Gene Analysis, for
Various Modes of Inheritance, Trait-Allele Frequencies, and Data Structures

MODE OF

INHERITANCE

AND qA

BIAS IN ESTIMATES OF STRONG G # E INTERACTION

(%)

Single Large Pedigree Mixed-Size Pedigrees

Segregation
Joint Segregation

and Linkagea

Observed-Gene
Analysis Segregation

Joint Segregation
and Linkagea

Observed-Gene
Analysis

Dominant:
.10 4.9 2.1 �2.0 2.0 .4 .2
.30 .0 �1.0 �2.1 4.9 3.2 2.9

Additive:
.30 10.1 .0 �5.8 27.6 23.1 5.4
.50 9.5 2.1 �2.6 24.4 19.9 4.4

Recessive:
.50 �1.9 �7.9 �3.3 11.7 8.4 3.8
.70 2.9 �.9 .2 6.2 3.2 1.3

a Simulated marker is diallelic, with and true .H � .50 v � .001

Table 6

Power for Detection of G # E Interaction, from Segregation, Joint Segregation and Linkage, and Observed-Gene Analysis, for Various
Modes of Inheritance, Trait-Allele Frequencies, and Data Structures

MODE OF

INHERITANCE

AND qA

POWER FOR DETECTION OF G # E INTERACTION

(%)

Single Large Pedigree Mixed-Size Pedigrees

Segregation
Joint Segregation

and Linkagea

Observed-Gene
Analysis Segregation

Joint Segregation
and Linkagea

Observed-Gene
Analysis

Dominant:
.10 59 61 75.5 68.5 72 88
.30 84 84 93.5 95 95 99.5

Additive:
.30 34.5 37 55.5 45 46.5 80
.50 36.5 43.5 71 57.5 60 86.5

Recessive:
.50 60 62 80.5 79.5 81 92.5
.70 80.5 84 94 92.5 95 99.5

a Simulated marker is diallelic, with and true .H � .50 v � .001

3b) ranged from 1.7 (for the dominant model, q �A

, mixed pedigrees) to 5.3 (for the additive model,.30
, mixed pedigrees). Relative efficiencies wereq � .30A

larger in the additive model than in the dominant or
recessive model, indicating that, by segregation analysis,
obtaining accurate estimates for an additive locus may
be more difficult than doing so for a dominant or re-
cessive locus.

5. Discussion

In this paper, we have demonstrated that including a
linked marker in a joint segregation and linkage analysis
leads both to less bias and increased efficiency for esti-
mation of G # E–interaction effects and to greater
power for detection of interactions, compared with seg-
regation analysis alone. Improvements in efficiency and
power are greater with a closely linked marker, com-

pared with a loosely linked marker, and with an increase
of H at the marker locus. These findings are consistent
with the hypothesis that addition of linkage information
reduces variance in the distribution of the unmeasured
trait gene within a family, leading to more-precise esti-
mates of its effect. Sensitivity analyses indicated that im-
provements, in power and RE, by use of joint analysis
can be expected over a range of inheritance modes, trait-
allele frequencies, and pedigree structures. Including
even a fairly uninformative marker ( ) led to im-H � .10
provements in power and efficiency, compared with seg-
regation analysis alone. This indicates that the analyst
can utilize any linked marker and expect some gains in
efficiency; he or she does not necessarily have to focus
on highly polymorphic markers that may be computa-
tionally time consuming to analyze if there are missing
data.
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Figure 3 RE for estimation of strong G # E–interaction effect,
by use of joint segregation and linkage analysis (a) or observed-gene
analysis (b), compared with segregation analysis, for varying modes
of inheritance, trait-allele frequencies, and data structures.

The focus of this paper was on estimation and detec-
tion of G # E interactions. An equally important issue
is the effect of ignoring a G # E interaction in the de-
tection of linkage and in the estimation of v. In a general
way, failure to model an important interaction is a form
of penetrance-model misspecification and thus, on the
basis of the results of Clerget-Darpoux et al. (1986),
should lead to both reduced power to detect linkage and
biased estimates of the v. Towne et al. (in press) have
analyzed pedigree data that were simulated with a G #

S interaction effect and have found that ignoring the
interaction did lead to lower LOD scores and to reduc-
tions in power to detect linkage, compared with inclu-
sion of the interaction in the penetrance model. G # E

interactions are likely to be important in the etiology of
many complex traits and should be carefully considered
in linkage studies of such traits.

Our simulation findings were based on analysis of a
quantitative trait, and, although it is likely that the re-
sults are generalizable to disease and other qualitative
outcomes, additional research is required. If pedigrees
are sampled at random from the population, as is often
the case when quantitative traits are of primary interest,
both trait and linkage model parameters can be jointly
estimated without ascertainment correction. However,
for disease traits, families are typically sampled on the
basis of the status of one or more of their members
(probands), thus requiring an ascertainment correction
if one is to obtain unbiased estimates of the disease allele-
frequency and penetrance parameters. Hsu et al. (in
press) have proposed, for disease outcomes, a class of
population-based study designs that facilitate ascertain-
ment correction in the context of joint segregation and
linkage analysis. In some cases, though, when linkage
analysis is the primary goal of the study, heavily disease-
loaded families are collected, making ascertainment cor-
rection impossible and thus precluding the use of joint
analysis.

In a typical progression of study, segregation analysis
is first used to determine the mode of inheritance at the
trait locus and to estimate corresponding penetrances
and allele frequencies. Linkage analysis is then used to
localize the trait gene, fixing the trait model parameters
to their maximum-likelihood estimates from the segre-
gation analysis. Several authors have demonstrated that
increased power for detection of linkage derives from
joint estimation of the trait and linkage model para-
meters (Tiret et al. 1992; Martinez et al. 1995; Craig et
al. 1996; Gauderman et al., in press). Similarly, the re-
sults of the present study suggest that, once linked mark-
ers are identified, the analyst can use this information
to improve estimates of the interaction and, possibly,
other trait model parameters. Alternatively, joint seg-
regation and linkage analysis can be used from the start,
providing a unified and more powerful framework for
estimating the effects of trait genes and for finding their
locations.

In the past, the increased computational demands of
joint segregation and linkage analysis may have been a
barrier to its general use. However, the current availa-
bility of affordable fast computers reduces the impor-
tance of this factor. For example, each joint segregation
and linkage analysis of the HGAR1 data required !2
min on a Pentium 166 personal computer, making com-
parison of several alternative models feasible. If com-
putation of the joint likelihood is simply infeasible be-
cause of model or pedigree complexity (e.g., for an
inbred pedigree), Monte Carlo techniques (Guo and
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Thompson 1992; Thomas and Cortessis 1992; Faucett
et al. 1993; Gauderman et al. 1995) can be applied.

In our analysis of Tg levels in the HGAR1 pedigree,
we found a significant interaction between a major gene
and BMI. A joint analysis, including a loosely linked
( ) diallelic marker, KM, that was missing in 18%v � .10
of subjects, led to both reduced variance in the estimated
G # BMI–interaction effect and a larger x2 statistic for
the interaction-hypothesis test, compared with segre-
gation analysis alone. Our estimates of the interaction
effect indicate that, for the majority of the population,
there is a weak-to-moderate correlation between BMI
and Tg levels but that, for ∼13% of subjects homozy-
gous at a major locus, there is a strong correlation
( ). It is premature to apply this result from ar � .72
public-health perspective, since determination of geno-
typic status is not feasible at this time. However, if a
major gene that influences Tg levels is discovered, its
interaction with BMI should be considered, and, if it is
still indicated, dietary and other measures aimed at con-
trol of obesity could be targeted at actual or suspected
gene carriers.
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